71 research outputs found

    Radioactive contamination of ZnWO4 crystal scintillators

    Full text link
    The radioactive contamination of ZnWO4 crystal scintillators has been measured deep underground at the Gran Sasso National Laboratory (LNGS) of the INFN in Italy with a total exposure 3197 kg x h. Monte Carlo simulation, time-amplitude and pulse-shape analyses of the data have been applied to estimate the radioactive contamination of the ZnWO4 samples. One of the ZnWO4 crystals has also been tested by ultra-low background gamma spectrometry. The radioactive contaminations of the ZnWO4 samples do not exceed 0.002 -- 0.8 mBq/kg (depending on the radionuclide), the total alpha activity is in the range: 0.2 - 2 mBq/kg. Particular radioactivity, beta active 65Zn and alpha active 180W, has been detected. The effect of the re-crystallization on the radiopurity of the ZnWO4 crystal has been studied. The radioactive contamination of samples of the ceramic details of the set-ups used in the crystals growth has been checked by low background gamma spectrometry. A project scheme on further improvement of the radiopurity level of the ZnWO4 crystal scintillators is briefly addressed.Comment: 15 pages, 8 figures, 6 tables, submitted for publicatio

    NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision Research

    Full text link
    We introduce the Never Ending VIsual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks, sorted chronologically and extracted from papers sampled uniformly from computer vision proceedings spanning the last three decades. The resulting stream reflects what the research community thought was meaningful at any point in time. Despite being limited to classification, the resulting stream has a rich diversity of tasks from OCR, to texture analysis, crowd counting, scene recognition, and so forth. The diversity is also reflected in the wide range of dataset sizes, spanning over four orders of magnitude. Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks, yet with a low entry barrier as it is limited to a single modality and each task is a classical supervised learning problem. Moreover, we provide a reference implementation including strong baselines and a simple evaluation protocol to compare methods in terms of their trade-off between accuracy and compute. We hope that NEVIS'22 can be useful to researchers working on continual learning, meta-learning, AutoML and more generally sequential learning, and help these communities join forces towards more robust and efficient models that efficiently adapt to a never ending stream of data. Implementations have been made available at https://github.com/deepmind/dm_nevis

    Game Plan: What AI can do for Football, and What Football can do for AI

    Get PDF
    The rapid progress in artificial intelligence (AI) and machine learning has opened unprecedented analytics possibilities in various team and individual sports, including baseball, basketball, and tennis. More recently, AI techniques have been applied to football, due to a huge increase in data collection by professional teams, increased computational power, and advances in machine learning, with the goal of better addressing new scientific challenges involved in the analysis of both individual players’ and coordinated teams’ behaviors. The research challenges associated with predictive and prescriptive football analytics require new developments and progress at the intersection of statistical learning, game theory, and computer vision. In this paper, we provide an overarching perspective highlighting how the combination of these fields, in particular, forms a unique microcosm for AI research, while offering mutual benefits for professional teams, spectators, and broadcasters in the years to come. We illustrate that this duality makes football analytics a game changer of tremendous value, in terms of not only changing the game of football itself, but also in terms of what this domain can mean for the field of AI. We review the state-of-theart and exemplify the types of analysis enabled by combining the aforementioned fields, including illustrative examples of counterfactual analysis using predictive models, and the combination of game-theoretic analysis of penalty kicks with statistical learning of player attributes. We conclude by highlighting envisioned downstream impacts, including possibilities for extensions to other sports (real and virtual)

    Search for double beta decay processes in 106Cd with the help of 106CdWO4 crystal scintillator

    Get PDF
    A search for the double beta processes in 106Cd was carried out at the Gran Sasso National Laboratories of the INFN (Italy) with the help of a 106CdWO4 crystal scintillator (215 g) enriched in 106Cd up to 66%. After 6590 h of data taking, new improved half-life limits on the double beta processes in 106Cd were established at the level of 10^{19}-10^{21} yr; in particular, T_{1/2}(2\nu \epsilon \beta^+) > 2.1 10^{20} yr, T_{1/2}(2\nu 2\beta^+) > 4.3 10^{20} yr, and T_{1/2}(0\nu 2\epsilon) > 1.0 10^{21} yr. The resonant neutrinoless double electron captures to the 2718 keV, 2741 keV and 2748 keV excited states of 106Pd are restricted to T_{1/2}(0\nu 2K) > 4.3 10^{20} yr, T_{1/2}(0\nu KL1) > 9.5 10^{20} yr and T_{1/2}(0\nu KL3) > 4.3 10^{20} yr, respectively (all limits at 90% C.L.). A possible resonant enhancement of the 0\nu 2\epsilon processes is estimated in the framework of the QRPA approach. The radioactive contamination of the 106CdWO4 crystal scintillator is reported.Comment: Minor changes of half-life limits after improving the data analysis; version accepted for publication on Phys. Rev.

    Low background detector with enriched 116CdWO4 crystal scintillators to search for double beta decay of 116Cd

    Get PDF
    A cadmium tungstate crystal boule enriched in 116^{116}Cd to 82% with mass of 1868 g was grown by the low-thermal-gradient Czochralski technique. The isotopic composition of cadmium and the trace contamination of the crystal were estimated by High Resolution Inductively Coupled Plasma Mass-Spectrometry. The crystal scintillators produced from the boule were subjected to characterization that included measurements of transmittance and energy resolution. A low background scintillation detector with two 116^{116}CdWO4_4 crystal scintillators (586 g and 589 g) was developed. The detector was running over 1727 h deep underground at the Gran Sasso National Laboratories of the INFN (Italy), which allowed to estimate the radioactive contamination of the enriched crystal scintillators. The radiopurity of a third 116^{116}CdWO4_4 sample (326 g) was tested with the help of ultra-low background high purity germanium γ\gamma detector. Monte Carlo simulations of double β\beta processes in 116^{116}Cd were used to estimate the sensitivity of an experiment to search for double β\beta decay of 116^{116}Cd.Comment: 24 pages, 13 figures, 3 tables, accepted for publication on Journal of Instrumentatio

    Searches for neutrinoless resonant double electron captures at LNGS

    Full text link
    Several experiments were performed during last years at underground (3600 m w.e.) Laboratori Nazionali del Gran Sasso (LNGS) of the INFN (Italy) to search for resonant 2ε0ν\varepsilon0\nu captures in 96Ru, 106Cd, 136Ce, 156Dy, 158Dy, 180W, 184Os, 190Pt with the help of HP Ge semiconductor detectors, and ZnWO4 and 106CdWO4 crystal scintillators. No evidence for r-2ε0ν\varepsilon0\nu decays was found, and only T_{1/2} limits were established in the range of 10^{14}-10^{21} yr.Comment: Proceedings of TAUP 2011 Conferenc
    • …
    corecore